Literature Cited

Agarwal M, Katiyar-Agarwal S, Sahi C, Gallie DR and Grover A (2001) Arabidopsis thaliana Hsp100 proteins: kith and kin. Cell Stress Chaperone. 6(3): 219-224

Anderson JV, Li Q-B, Haskell DW and Guy CL (1993) Structural organization of the spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and expression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 104: 1359-1370

Atkinson BG, Raizada M, Bouchard RA, Frappier JRH and Walden DB (1993) The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Dev. Genet. 14: 15-26

Barnes, D.K., D M. Smith, R.E. Stucker, and L.J. Elling. (1978) Fall dormancy in alfalfa: A valuable predictive tool. Proc. 26th N. Amer. Alfalfa Imp. Conf. Brookings, SD

Barros MD, Czarnecka E and Gurley WB (1992) Mutational analysis of a plant heat shock element. Plant Mol. Biol. 19:665-675

Bharti K, Schmidt E Luck R, Heerhlotz D, Bublak D and Scharf KD (2000) Isolation and characterization of HSFA3, a new heat shock transcription factor of Licopersicon peruvianum. Plant J. 22(4): 355-365

Bauchan GR and Hossain MA (1998) Karyotypic analysis of N-banded chromosomes of diploid alfalfa: Medicago sativa ssp. caerulea and ssp. falcata and their hybrid. J. Heredity 89(2): 191-193

Bauchan GR and Hossain MA (1997) Karyotypic analysis of C-banded chromosomes of diploid alfalfa: Medicago sativa ssp. caerulea and ssp. falcata and their hybrid. J. Heredity 88(6): 533-537

Bouchard RA, Frappier JRH, Liu L, Raizada M, Atkinson BG and Walden DB (1993) Developmentally-modulated expression of transcripts from stress-inducible gene families during microsporogenesis and gametophyte development in Zea mays L. Maydica 38: 135-144

Boston RS, Viitanen PV and Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32: 191-222

Brummer, E.C., Shah, M.M. and Luth D. (1999) Reexamining the relationship between fall dormancy and winter hardiness in alfalfa. Crop Sci. 40: 971–977

Burke JJ, Hatfield JL, Klein RR and Mullet JE (1985) Accumulation of heat shock proteins in field grown cotton. Plant Physiol. 78: 394-398

Cabané M, Calvet P, Vincens P and Boudet AM (1993) Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta 190: 346-353

Carranco R, Almoguera C and Jordano J (1999) An imperfect heat shock element and different upstream sequences are required for seed-specific expression of a small heat shock protein gene. Plant Physiol. 121: 723-730

Chen HH, Shen ZY and Li PH (1982) Interrelationships of freezing and heat tolerance in tuber-bearing Solanum species. Hort. Sci. 17: 248-249

Choeng YH, Chang HS, Gupta R, Wang X, Zhu T and Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress and hormonal response in Arabidopsis. Plant Physiol. 129: 661-677

Collins GG, Nie X and Saltveit ME (1993) Heat shock increases chilling tolerance in mung bean hypocotyl tissue. Physiol. Plant. 89:177-124

Clos J, Westwood JT, Becker PB, Wilson S, Lambert U and Wu C (1990) Molecular cloning and expression of a hexameric Drosophila heat shock transcription factor subject to negative regulation. Cell. 63: 1085-1097

Czarnecka-Verner E, Pan S, Salen T and Gurley WB (2003) Plant HSFs can recruit general transcription factors, TBP and TFIIB, to the promoter. In preparation.

Czarnecka-Verner E and Gurley WB (2002) Arabidopsis class A and B HSFs show a spectrum of transcriptional activity. Biotechnologia 3: 58-68

Czarnecka-Verner E, Yuan CX, Scharf KD, Englich G and Gurley WB (2000) Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol. Biol. 43(4): 459-471

Czarnecka E, Key JL and Gurley WB (1998) Regulatory domains of the Gmhsp17.5E heat shock promoter of soybean. Mutational analysis. Mol. Cell. Biol. 9:3457-3463

Czarnecka-Verner E, Yuan CX, Nover L, Scharf KD, Englich G and Gurley WB (1997) Plant heat shock transcription factors: positive and negative aspects of regulation. Acta Physiologiae Plantarum 19(4): 529-537

Czarnecka-Verner E, Yuan CX, Fox PC and Gurley WB (1995) Isolation and characterization of six heat shock transcription factors from soybean. Plant Mol. Biol. 29: 37-51

Czarnecka-Verner E, Dulce-Barros M and Gurley WB (1994) Regulation of the heat shock gene expression. p131-161. In Stress Induced Gene Expression. A.S. Basra Ed. Harwood Acad. Pub.

Czarnecka E, Edelman E, Schöffl F and Key JL (1984) Comparative analysis of physiological stress responses in soybean seedlings using cloned heat shock gene cDNAs. Plant Mol. Biol. 3: 45-58

De Pomerai D (1996) heat shock proteins as biomarkers of pollution. Hum. Exp. Toxicol. 15:279-285

Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L. (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell. 12(2): 265-78

Feder ME and Hofmann GE (1999) Heat shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Ann. Rev. Physiol. 61:243-282

Feige U and Mollenhauer J (1992) Multi-author reviews on heat shock proteins. Experientia 48: 621-656

Friedberg JN, Bowley SR, Czarnecka-Verner E, Gurley WB and McKersie BD (2003) Isolation, characterization and localization of an alfalfa heat shock transcription factor. In preparation

Friedberg JN, Czarnecka-Verner E, Gurley WB, Bowley SR and McKersie BD (2000) Isolation and characterization of an alfalfa heat shock transcription factor. Conference of the International Society of Plant Molecular Biologists. Quebec City, Quebec, Canada. Poster Presentation

Friedberg JN and Walden DB (1999) The expression and localization of HSP 18 mRNA in Zea mays L. callus. Maize Gen. Coop. Newsletter.

Friedberg JN, Yang Z and Walden DB (1998) The thermal induction of HSP 18 mRNA in Zea mays callus. Maize Gen. Coop. Newsletter. 72: 56

Forreiter, C. and Nover, L. (1998) Heat induced stress proteins and the concept of molecular chaperones. J. Biosci. 23(4): 287-302

Forreiter C, Kirschner M and Nover L (1997) Stable transformation of Arabidopsis cell suspension culture firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell 7: 2171-2181

Frydman J, Nimmesgern E, Ohtsuka K and Hartl FU (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111-117

Frydman J and Hartl FU (1996) Principals of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science 272: 1497-1503

Gagliardi D, Breton C, Chaboud A, Vergne P and Dumas C (1995) Expression of heat shock factor and heat shock protein 70 genes during maize pollen development. Plant Mol. Biol. 29: 841-856

Gaydos J, Curry J and O'Connell MA (2001) Drought-responsive transcripts in leaves of drought resistant tepary bean. Agronomy and Horticulture, New Mexico State University, Las Cruces, NM USA. GenBank Direct Submission

Georgieva K (1999) Some mechanisms of damage and acclimation of the photosynthetic apparatus due to high temperature. Bulgarian J. Plant Physiol. 25(3-4): 89-99

Greyson RI, Yang Z, Bouchard RA, Frappier JRH, Atkinson BG, Banasikowska E and Walden DB (1996) Maize seedlings show cell-specific responses to heat shock as revealed by expression of RNA and protein. Dev. Genet. 18, 244-253

Guy C, Haskell D, Li Q-B and Zhang C (1998a) Molecular chaperones: Do they have a role in cold stress responses of plants. pp 109-129. In, Plant Cold Hardiness, Ed. LI and Chen. Plenum Press, New York.

Guy C, Haskell D and Li Q (1998b) Association of proteins with the stress 70 molecular chaperones at low temperature: evidence for the existence of cold labile proteins in spinach. Cryobiology 36: 301-314

Guy C and Haskell D (1987) Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimated induced proteins. Plant Physiol. 84: 872-878

Guy C, Haskell D, Li Q-B and Zhang C (1997) Molecular chaperones: do they have a role in cold stress responses of plants. In Plant Cold Hardiness, Molecular Biology, Biochemistry and Physiology. pp 109-129. Ed. Li and Chen. Plenum Press, New York.

Hardy JA, Walsh STR and Nelson HCM (2000) Role of an ?-helical bulge in the yeast heat shock transcription factor. J. Mol. Biol. 295: 393-409

Harrison CJ, Bohm AA and Nelson CM (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science. 263: 224-227

Heikkila, J.J. 1993. Heat shock gene expression and development. Dev. Genet. 14: 1-158

Hernandez LD and Vierling E (1993) Expression of low molecular weight heat shock proteins under field conditions. Plant Physiol. 101: 1209-1216

Hill JE and Hemmingsen SM (2001) Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperone. 6(3): 190-200

Hübel A and Schöffl F (1994) Arabidopsis heat shock factor: isolation and characterization of gene and the recombinant protein. Plant Mol. Biol. 26: 353-362

Ivanov AI (1977) History, origion and evolution of the genus, Medicago, subgenus Falcago. Bull. Appl. Bot. Genet. Select. 59: 3-40

Ivey III RA, Subramanian C and Bruce BD (2000) Identification of a HSP 70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol. 122: 1289-1299

Jakobsen BK and Pelham HRB (1991) A conserved heptapeptide restrains the activity of yeast shock transcription factor. EMBO 10:369-375

Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O and Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280(5360): 104-106

Jinn TL, Chen YM and Lin CY (1995) Characterization and physiological function of class I low-molecular-mass heat shock protein complex in soybean. Plant Physiol. 108: 693-701

Kadyrzhanova DK, Vlachonasios KE, Ververidis P and Dilley DR (1998) Molecular cloning of a novel heat induced chilling tolerant related cDNA in tomato fruit by use of mRNA differential display. Plant Mol. Biol. 36: 885-895

Key JL, Boissy RJ, Lin CY, Nagao RT, Czarnecka E and Schöffl F (1985) Physiological and molecular analysis of the heat shock response in plants. pp. 327-348 In Changes in Eukaryotic Gene Expression in Response to Environmental Stress, Ed. Atkinson and Walden.. New York Academic Press

Kim BH and Schöffl F (2002) Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J. Exp. Bot. 53(367): 371-375

Kimpel JA and Key JL (1985) Presence of heat shock mRNAs in field grown soybeans. Plant Physiol. 79: 672-678

Kimura Y, Yahara I and Lindquist S (1995) Role of protein chaperone YDJ1 in establishing HSP 90-mediated signal transduction pathways. Science 268: 1362-1365

Krasko A, Scheffer U, Koziol C, Pancer Z, Batel R et al., (1997) Diagnosis of sub lethal stress in the marine sponge Geodia cydonium: application of the 70kDa heat shock protein as a novel biomarker, the Rab GDP dissociation inhibitor, as probes. Aquat. Toxicol. 37:157-168

Krishna P and Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperone 6(3): 238-246

Krishna P, Sacco M, Cherutti JF and Hill S (1995) Cold-induced accumulation of HSP 90 transcripts in Brassica napus. Plant Physiol. 107: 915-923

Kryndushkin DS, Smirnov VN, Ter-Avanesyan MD, Kushnirov VV (2002) Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions. J. Biol. Chem. 277(26): 23702-23708

Lafuente MT, Belver A, Guye MG and Saltveit ME (1991) Effect of temperature conditioning on chilling injury of cucumber cotyledons. Plant Physiol. 95: 433-449

Lee JH, Hübel A and Schöffl F (1995) Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 8(4): 603-612

Levitt J (1971) Low-temperature stresses - The freezing process, pp 44-60. In Responses of plants to environmental stresses. Ed. Kozlowski. Academic Press, New York and London

Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation. 106(2): 196-201

Li HY, Chang CS, Lu LS, Liu CA, Chan MT and Charng YY (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsf1b) enhances chilling tolerance in transgenic tomato. Bot. Bull. Acad. Sinica. 44 (2): 129-140

Li QB and Guy CL (2001) Evidence for non-circadian light/dark-regulated expression of HSP 70s in spinach leaved. Plant Physiol. 125: 1633-1642

Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A and Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperone. 6(3): 201-208

Lindquist S (1986) The heat shock response. Ann. Rev. Biochem. 55: 1151-1191

Lurie S and Klein JD (1991) Acquisition of low-temperature tolerance in tomatoes by exposure to high temperature stress. J. Amer. Soc. Hort. Sci. 116(6): 1007-1012

Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:399-429

McKensie JS, Paquin R and Duke SH (1988) Cold and heat tolerance. pp 259-302. In Alfalfa and alfalfa improvement. Ed. Hanson, et al. Agron, Monogr. ASA. Madison WI.

McKersie BD, Murnagham KS, Jones KS and S Bowley (2000). Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance. Plant Physiology 122:1427-1437

McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inze D, D'Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.) Plant Physiol 103: 1155-1163

Merquiol E, Pnueli L, Cohen M, Simovitch M, Rachmilevitch S, Goloubinoff P, Kaplan A and Mittler R (2002) Seasonal and diurnal variations in gene expression in the desert legume Retama raetam. Plant Cell Environ. 25: 1627-1638

Miernyk JA (2001) The J-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of chaperones. Cell Stress Chaperone. 6(3): 209-218

Moller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52: 561-591

Morimoto RI, Tissieres A and Georgopoulos C (1994) The biology of heat shock proteins and molecular chaperones. New York: Cold Spring Harbor Press.

Nakai A and Morimoto RI (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13: 1983-1997

Neven LG, Haskell DW, Guy CL, Denslow N, Klein PL, Green LG and Silverman A (1992) Association of 70kDA heat shock cognate proteins with acclimation to cold. Plant Physiol. 99:1362-1369

Nguyen HT, Joshi CP, Klueva N, Weng J, Hendershot KL and Blum A (1994) The heat shock response and expression of heat shock proteins in Wheat under diurnal heat stress and field conditions. Aust. J. Plant Physiol. 21: 857-867

Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE and Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7:661-676

Nishida I and Murata N (1996) Chilling sensitivity in plants and cyanobacteria: The crucial contributions of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541-568

Noctor G and Foter CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol. 49: 249-279

Nordin K, Heino P and Palva ET (1991) Separate signal pathways regulate the expression of a low temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 16:1061-1071

Nover L, Kapil B, Döring P, Mishra SK, Ganguli A and Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress. Chaperones. 6(3): 177-189

Nover L (1994) The heat stress response as part of the plant stress network: An overview with six tables. pp. 3-45. In: NATO-ASI Series on Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, Ed. Cherry, J.H. Springer, Berlin-New York

Nover L (ed.) (1991) Heat Shock Response. CRC Press, Boca Raton, Florida

Nover L and Forreiter C (1998) Heat induced stress proteins and the concept of molecular chaperones. J. Biosci. 23(4): 287-302

Nover L, Sharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E and Gurley WB (1996) The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1(4): 215-223

Nover L and Scharf KD (1997) Heat stress proteins and transcription factors. Cell. Mol. Life Sci. 53: 80-103

Pal JK (1998) HSP90 regulates protein synthesis by activating the heme-regulated eukaryotic initiation factor 2? (eIF-2?) kinase in rabbit reticulocyte lysates. J. Biosci. 23(4): 353-360

Palta JP, Chen HH and Li PH (1981) Relationship between heat and frost resistance of tuber-bearing Solanum species: effects of cold acclimation on heat resistance. Bot. Gaz. 142: 311-315

Palva ET and Heino P (1998) Molecular mechanism of plant cold acclimation and freezing tolerance. pp.3-14. In Plant Cold Hardiness. Ed. Li, P.H. and Chen, T.H.H. Plenum. New York

Pareek A, Singla SL and Grover A (1998) Plant HSP 90 family with special reference to rice. J. Biosci. 23(4): 361-367.

Park SY, Shivaji R, Krans JV and Luthe DS (1996) Heat shock response in heat tolerant and nontolerant variants of Agrostis palustris huds. Plant Physiol. 111: 515-524

Parsell DA, Kowal AS, Singer MA and Lindquist S (1994) Protein disaggregation mediated by heat shock protein HSP 104. Nature 372: 475-478

Parsell DA and Lindquist S (1993) The function of heat shock proteins. Ann. Rev. Genet. 27: 437-496

Pelham HRB (1982) A regulatory upstream promoter element in the Drosophila HSP 70 heat shock gene. Cell. 30: 517-528.

Pirkkala L, Nykänen P and Sistonen (2001) Foles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15:1118-1131

Prändl R, Hinderhofer K, Eggers-Schumacher G and Schöffl F (1998) HSF3, a new heat shock factor from Aradidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Genet. 258: 269-278

Rabindran SK, Giorgi G, Clos J and Wu C (1991) Molecular cloning and expression of a human heat shock factor. Proc. Natl. Acad. Aci. USA. 88: 6906-6910

Rabindran SK, Haroun RI, Clos J, Wisniewski J and Wu C (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 259: 230-234

Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia. 18: 571-573

Sabahat A, Lurie S and Weiss D (1998) Expression of small heat shock proteins at low temperature. Plant Physiol. 117: 651-658

Samali A and Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chap. 3(4): 228-236

Sambrook J, Russell DW and Sambrook J (2000) Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory

Sarge KD, Zimarino V, Holm K, Wu C and Morimoto RI (1991) Cloning and characterizing of two mouse heat shock factors with distinct inducible and constitutive DNA binding ability. Genes Develop. 5: 1902-1911

Satyal SH and Morimoto RI (1998) Biochemical events in the activation and attenuation of the heat shock transcriptional response. J. Biosci. 23: 303-311

Schafler AE, Kirmanoglou K, Balbach J, Pecher P, Hannekum A, Schumacher B (2002) The expression of heat shock protein 60 in myocardium of patients with chronic atrial fibrillation. Basic Res Cardiol 97(3): 258-61

Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M and Wiseman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell.13: 113-123

Scharf KD, Rose S, Zott W, Schöff F and Nover L (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO 9(13): 4495-4501

Scharf KD, Siddique M and Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a- crystalline domains (Acd proteins). Cell Stress Chaperone. 6(3): 225-237

Scharf KD, Höhfeld I and Nover L (1998a) Heat stress response and heat stress transcription factors. J. Biosci. 23(4): 313-329

Scharf KD Heider H Höhfeld I, Lyck R, Schmidt E, and Nover L (1998b) The tomato hsf system: HsfA2 needs interaction with HsfA1 for efficient impot and may be localized in cytoplasmic granules. Mol. Cell. Biol. 18(4): 2240-2251

Schlesinger MJ, Ashbnrner M and Tissieres A (1982) Heat shock from bacteria to man. Cold Spring Harbor Lab., Cold Spring Harbor, New York

Schneider C, Sepp-Lorenzino L, Nimmesgern E, Ouerfelli O, Danishewski S, Rosen N and Hartl FU (1997) Pharmacological shifting of a balance between protein refolding and degradation mediated by HSP90. Proc. Natl. Acad. Sci. USA 93: 14536-14541

Schöffl F, Prändl R and Reindl A (1998) Regulation of the heat-shock
response. Plant Physiol. 117: 1135-1141

Schöffl F and Key JL (1982) Analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J. Mol. App. Gen. 1: 301-314

Schwab PM, Barnes D, Sheaffer CC and Li PH (1996) Factors affecting a laboratory evaluation of alfalfa cold tolerance. Crop Sci. 36: 318-324

Sironen RK, Karjalainen HM, Elo MA, Kaarniranta K, Torronen K, Takigawa M, Helminen HJ and Lammi MJ (2002) cDNA array reveals mechanosensitive genes in chondrocytic cells under hydrostatic pressure. Biochim. Biophys. Acta. 1591(1-3): 45-54

Shoji T, Kato K, Sekine M, Yoshida K and Shinmyo A (2000) Two types of heat stressed factors in cultured tobacco cells. Plant Cell Rep. 19: 414-420

Sorger PK and Pelham HRB (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature dependant phosphorylation. Cell. 54: 855-864

Soti C and Csermely P (1998) Characterization of the nucleotide binding properties of the 90 kDa heat shock protein (Hsp90). J. Biosci. 23(4): 347-352

Soto A, Allona I, Collada C, Guevera, M-A, Casado R, Rodriguez-Cerezo E, Aragoncillo C and Gomez L (1999) Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120: 521-528

Srivastava PK (1998) Heat shock proteins in protein-peptide interaction as the basis for a new generation of vaccines against cancers and infectious diseases. J. Biosci. 23(4): 527-531

Steponkus PL, Uemura M, Joseph RA, Gilmour SJ and Thomashow MF (1998) Mode of action of the COR 15a gene on the freezing tolerance of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 95: 14570-14575

Stump DG, Landsberger N and Wolffe AP (1995) The cDNA encofing Xenopus laevis heat-shock factor1 (XHsf1): nucleotide and deduced amino-acid sequence, and properties of the encoded protein. Gene 160: 207-211

Tatar M, Khazaeli AA and Curtsinger JW (1997) Chaperoning extended life. Nature 390: 30

Thomashow MF (1999) Plant cold acclimation: freezing tolerance and regulatory mechanisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50: 571-599

Thomashow MF, Stockinger EJ, Jaglo-Ottosen KR, Gilmour SJ and Zarka DG (1997) Molecular genetic analysis of Arabidopsis freezing tolerance. Proc. Natl. Acad. Sci. USA 94: 1035-1040

Tsukijama N, Becker PB and Wu C (1994) ATP-dependant nucleosome disruption at a heat shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525-532

Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S and Fujikawa S (1999) Accumulation of small heat shock protein homologues in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol. 120: 481-489

Van Berkel J, Salamini F and Gebhardt C (1994) Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress responsive genes. Plant Physiol. 104: 445-452

Vierling E (1991) Roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620

Westwood JT, Clos J and Wu C (1991) Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature. 353: 822-827

Wiederrecht G, Seto D and Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54: 841-853

Wollgiehn R and Neumann D (1999) Metal stress response and tolerance of cultured cells from Sliene vulgaris and Lycopersicon peruvianum: Role of heat stress proteins. J. Plant Physiol. 154: 547-553

Wu C (1995) Heat shock transcription factors: Structure and regulation. Ann. Cell. Dev. Biol. 11: 441-469